In-Ti (Indium-Titanium)

H. Okamoto

The In-Ti phase diagram in [Massalski2] was redrawn from [1987Mur]. The existence of In₄Ti₃ and InTi₃ was known.

Figure 1 shows the In-Ti phase diagram determined by [2003Gul] using differential thermal analysis, x-ray diffraction, and energy-dispersive x-ray analysis. The existence of InTi₃ was confirmed. The In₄Ti₃ phase with the Mn₂Hg₅ structure reported in [1987Mur] was found to be In₅Ti₂. In addition, two new phases with a narrow solubility range were found at 56 and 61.5 at.% Ti. As shown with dashed lines in Fig. 1, the liquidus boundaries and solubility limits of $\beta/\alpha InTi_3$, (βTi), and (αTi) are still uncertain.

In-Ti crystal structure data are shown in Table 1.

References

1987Mur: J.L. Murray, The In-Ti (Indium-Titanium) System, Phase Diagrams of Binary Titanium Alloys, J.L. Murray, Ed., ASM International, 1987, p 143-145 2003Gul: L.D. Gulay and J.C. Schster, Investigation of the Tita-

nium-Indium System, J. Alloys Compd., Vol 360, 2003, p 137-142

In-Ti crystal structure data Table 1

	Composition, at.% Ti			Strukturbericht designation	Prototype
Phase		Pearson symbol	Space group		
(In)	0	tI2	I4/mmm	<i>A</i> 6	In
In ₅ Ti ₂	28.6	<i>tP</i> 14	P4/mbm		Mn_2Hg_5
InTi _{1+x}	56	* <i>P</i> 4			AuCu ₃ or PbO
In ₅ Ti ₈	61.5	cP^*	$p\overline{4}3m$		γ-brass related
$\beta InTi_3$	66 to 76				
$\alpha InTi_3$	67 to 75	hP8	P63/mmc	$D0_{19}$	Ni ₃ Sn
(BTi)	79 to 100	cI2	Im3m	A2	W
(aTi)	90 to 100	hP2	P6 ₃ /mmc	A3	Mg

Fig. 1 In-Ti phase diagram

400

Weight Percent Titanium